VEKTORANALYS

Kursvecka 5

övningar

PROBLEM 1

Use "nablaräkning" to verify: $\quad \operatorname{rot}(\phi \bar{A})=\operatorname{grad} \phi \times \bar{A}+\phi \operatorname{rot} \bar{A}$
SOLUTION
Add the dots

$$
\operatorname{rot}(\phi \bar{A})=\nabla \times(\phi \bar{A}) \stackrel{\swarrow}{=} \times(\phi \bar{A})+\nabla \times(\phi \bar{A})=
$$

Now nabla can be considered as a vector: $\bar{n} \times(c \bar{a})+\bar{n} \times(c \bar{a})=(\bar{n} c) \times \bar{a}+c(\bar{n} \times \bar{a}) \quad$ (because c is a scalar)

$$
\begin{aligned}
& =(\nabla \phi) \times \bar{A}+\phi(\nabla \times \bar{A})= \\
& =(\nabla \phi) \times \bar{A}+\phi(\nabla \times \bar{A})
\end{aligned}
$$

PROBLEM 2

Use "nablaräkning" to verify: $\operatorname{div} \operatorname{rot} \bar{A}=0$
SOLUTION
Now nabla can be considered as a vector.

$$
\begin{aligned}
\operatorname{div} \operatorname{rot} \bar{A} & =\nabla \cdot(\nabla \times \bar{A})=\quad \quad \text { Because: } \bar{n} \cdot(\bar{n} \times \bar{a})=\bar{a} \cdot(\underbrace{\bar{n} \times \bar{n}}_{=0}) \\
& =\bar{A} \cdot(\nabla \times \nabla)=(\nabla \times \nabla) \cdot \bar{A}=0
\end{aligned}
$$

PROBLEM 3

Use "nablaräkning" to verify:

$$
(\bar{A} \times \nabla) \times \bar{A}=\frac{1}{2} \nabla A^{2}-\bar{A}(\nabla \cdot \bar{A})
$$

SOLUTION

$$
\begin{aligned}
(\bar{A} \times \nabla) \times \bar{A} & =(\bar{A} \times \nabla) \times \bar{A}=\quad \cdots \cdots \cdots \cdots(\bar{a} \times \bar{n}) \times \bar{b}=(\bar{a} \cdot \bar{b}) \bar{n}-(\bar{n} \cdot \bar{b}) \bar{a} \\
& =\nabla(\bar{A} \cdot \bar{A})-\bar{A}(\nabla \cdot \bar{A})=\ldots \nabla A^{2}=\nabla(\bar{A} \cdot \bar{A})=\nabla(\bar{A} \cdot \bar{A})+\nabla(\bar{A} \cdot \bar{A})=2 \\
& =\frac{1}{2} \nabla A^{2}-\bar{A}(\nabla \cdot \bar{A})
\end{aligned}
$$

PROBLEM 4

Use "nablaräkning" to simplify: $\quad \bar{B}=\bar{A} \times(\nabla \times \bar{A})-(\bar{A} \times \nabla) \times \bar{A}$

SOLUTION

$$
\begin{array}{rlr}
\bar{B} & =\bar{A} \times(\nabla \times \bar{A})-(\bar{A} \times \nabla) \times \bar{A}=\bar{A} \times(\nabla \times \bar{A})-(\bar{A} \times \nabla) \times \bar{A}=\bar{A} \times(\nabla \times \bar{A})+\bar{A} \times(\bar{A} \times \nabla)_{V}= \\
& =\nabla(\bar{A} \cdot \bar{A})-\bar{A}(\bar{A} \cdot \nabla)-\nabla(\bar{A} \cdot \bar{A})+\bar{A}(\bar{A} \cdot \nabla)= & \text { using } \bar{a} \times(\bar{b} \times \bar{c})=\bar{b}(\bar{a} \cdot \bar{c})-\bar{c}(\bar{a} \cdot \bar{b}) \\
& =\nabla(\bar{A} \cdot \bar{A})-(\bar{A} \cdot \nabla) \bar{A}-\nabla(\bar{A} \cdot \bar{A})+\bar{A}(\nabla \cdot \bar{A})= \\
& =-(\bar{A} \cdot \nabla) \bar{A}+\bar{A}(\nabla \cdot \bar{A})=\bar{A}(\nabla \cdot \bar{A})-(\bar{A} \cdot \nabla) \bar{A} &
\end{array}
$$

PROBLEM 5

Calculate $\quad \varepsilon_{i j k} \varepsilon_{l j k}$

SOLUTION

We know that

$$
\varepsilon_{i j k} \varepsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
$$

Therefore:

PROBLEM 6

Prove $\quad \bar{a} \times(\bar{b} \times \bar{c})=(\bar{a} \cdot \bar{c}) \bar{b}-(\bar{a} \cdot \bar{b}) \bar{c}$
using the suffix notation.

SOLUTION

We know that the i-component of the cross product can be written as: $(\bar{a} \times \bar{b})_{i}=\varepsilon_{i j k} a_{j} b_{k}$ Therefore:

$$
\begin{aligned}
\bar{a} \times(\bar{b} \times \bar{c})_{i} & =\varepsilon_{i j k} a_{j}(\bar{b} \times \bar{c})_{k}=\quad(\bar{b} \times \bar{c})_{k}=\varepsilon_{k m m} c_{c} \\
& =\varepsilon_{i j k} a_{j} \varepsilon_{k l m} b_{l} c_{m}= \\
& =\varepsilon_{i j k} \varepsilon_{k l m} a_{j} b_{l} c_{m}= \\
& =\left(\delta_{i l k} \delta_{j m}-\delta_{i m} \delta_{j l}\right) a_{j} b_{l} c_{m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l} \sigma_{j l} b_{l} c_{m}-\delta_{i m} \delta_{j l} a_{j} b_{l} c_{m}= \\
& =a_{m} b_{i} c_{m}-a_{l} b_{l} c_{i}=(\bar{a} \cdot \bar{c}) b_{i}-(\bar{a} \cdot \bar{b}) c_{i}
\end{aligned}
$$

PROBLEM 7

Use "indexräkning" to verify

$$
\operatorname{div}(\bar{A} \times \bar{B})=(\operatorname{rot} \bar{A}) \cdot \bar{B}-(\operatorname{rot} \bar{B}) \cdot \bar{A}
$$

SOLUTION

$$
\begin{gathered}
\operatorname{div}(\bar{A} \times \bar{B})=(\bar{A} \times \bar{B})_{, i}=\left(\varepsilon_{i j k} A_{j} B_{k}\right)_{, i}=\varepsilon_{i j k}\left(A_{j} B_{k}\right)_{, i}=\varepsilon_{i j k}\left(A_{j, i} B_{k}+A_{j} B_{k, i}\right)= \\
=\varepsilon_{i j k} A_{j, i} B_{k}+\varepsilon_{i j k} A_{j} B_{k, i}=\varepsilon_{k i j} A_{j, i} B_{k}-\varepsilon_{j i k} B_{k . i} A_{j}=(\operatorname{rot} \bar{A}) \cdot \bar{B}-(\operatorname{rot} \bar{B}) \cdot \bar{A} \\
\text { remember that: }(\nabla \times \bar{A})_{i}=\varepsilon_{i j k} A_{k, j}
\end{gathered}
$$

PROBLEM 8

Show that: $\quad \iiint_{V} \bar{r} \times \operatorname{rot} \bar{A} d V=2 \iiint_{V} \bar{A} d V$
if on the boundary surface S of V the vector field is $\bar{A}=0$

SOLUTION

Let's consider only the i-th component of the left hand side:

$$
\begin{gather*}
\hat{e}_{i} \cdot \iiint_{V} \bar{r} \times \operatorname{rot} \bar{A} d V=\iiint_{V} \hat{e}_{i} \cdot(\bar{r} \times \operatorname{rot} \bar{A}) d V=\iiint_{V}(\operatorname{rot} \bar{A}) \cdot\left(\hat{e}_{i} \times \bar{r}\right) d V= \tag{ID4}\\
\bar{a} \cdot(\bar{b} \times \bar{c})=\bar{c} \cdot(\bar{a} \times \bar{b})
\end{gather*}
$$

To continue, we must remember that: $\quad \nabla \cdot(\bar{a} \times \bar{b})=\bar{b} \cdot(\nabla \times \bar{a})-\bar{a} \cdot(\nabla \times \bar{b})$
therefore,

$$
\nabla \cdot(\bar{A} \times \overbrace{\left(\hat{e}_{i} \times \bar{r}\right)})=\left(\hat{e}_{i} \times \bar{r}\right) \cdot(\nabla \times \bar{A})-\bar{A} \cdot \nabla \times\left(\hat{e}_{i} \times \bar{r}\right)
$$

re-arranging the terms:

$$
(\operatorname{rot} \bar{A}) \cdot\left(\hat{e}_{i} \times \bar{r}\right)=\operatorname{div}\left(\bar{A} \times\left(\hat{e}_{i} \times \bar{r}\right)\right)+\bar{A} \cdot \operatorname{rot}\left(\hat{e}_{i} \times \bar{r}\right)
$$

$$
\begin{aligned}
& =\iiint_{V}\left[\operatorname{div}\left(\bar{A} \times\left(\hat{e}_{i} \times \bar{r}\right)\right)+\bar{A} \cdot \operatorname{rot}\left(\hat{e}_{i} \times \bar{r}\right)\right] d V= \\
& =\iiint_{V} \operatorname{div}\left(\bar{A} \times\left(\hat{e}_{i} \times \bar{r}\right)\right) d V+\iiint_{V} \bar{A} \cdot \underset{\sim}{\operatorname{rot}\left(\hat{e}_{i} \times \bar{r}\right)=(\bar{r} \cdot \nabla) \hat{e}_{i}-\left(\hat{e}_{i} \cdot \nabla\right) \bar{r}+\hat{e}_{i}(\nabla \cdot \bar{r})-\bar{r}\left(\nabla \cdot \hat{e}_{i}\right)} \\
& \text { Generalized Gauss theorem } \\
& =\underbrace{\iint_{S}\left(\bar{A} \times\left(\hat{e}_{i} \times \bar{r}\right)\right) \cdot d \bar{S}}_{=0}+\iiint_{V} \bar{A} \cdot 2 \hat{e}_{i} d V=2 \iiint_{V} A_{i} d V
\end{aligned}
$$

Because on $S, \bar{A}=0$
So, we have: $\quad \hat{e}_{i} \cdot \iiint_{V} \bar{r} \times \operatorname{rot} \bar{A} d V=2 \iiint_{V} A_{i} d V$

